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Method of Complex Variables for Planar Potential Flows

We have established that if we denote the complex potential, φ+ iψ, by f and the complex position vector,
x+ iy, by z then any function, f(z), corresponds to a particular planar potential flow and, furthermore,
that the derivative df/dz = u− iv. Here we will begin with a few simple examples by choosing various f(z)
and determining the flows to which those functions correspond. Clearly f(z) = Uz where U is a constant
corresponds to a uniform stream in the x direction since then df/dz = U therefore u− iv = U and so u=U
and v = 0. Similarly , f(z) = (U − iV )z corresponds to a more general uniform stream with u = U and
v = V .

Introducing polar coordinates (r, θ) such that x = cos θ and y = sin θ it follows that

z = x+ iy = reiθ (Bgeb1)

and therefore the particular function

f(z) = zn = rneinθ = rn(cos nθ + i sinnθ) (Bgeb2)

so that

φ = rn cos nθ , ψ = rn sin nθ , u = nrn−1 cos (n − 1)θ , v = −nrn−1 sin (n − 1)θ (Bgeb3)

and this clearly corresponds to one of the components of the general solution to planar potential flow
generated earlier by the method of separation of variables in polar coordinates. Moreover, the choice of
the particular function, f(z) = z−n leads to the flow

φ = r−n cos nθ , ψ = −r−n sinnθ , u = −nr−(n+1) cos (n + 1)θ , v = −nr−(n+1) sin (n + 1)θ (Bgeb4)

which corresponds to another group of terms in the aforementioned general solution. In addition there are
two special cases in the same category, The first is the function, f(z) = ln z which corresponds to part of
the special case in the aforementioned general solution, namely

φ = ln r , ψ = θ , u = r−1 cos θ , v = r−1 sin θ (Bgeb5)

and is clearly a simple line source/sink. Secondly, the function f(z) = −i ln z corresponds to the other
part of the special case in the aforementioned general solution, namely

φ = θ , ψ = − ln r , u = −r−1 sin θ , v = r−1 cos θ (Bgeb6)

which is clearly a free vortex.

Before leaving the case of f(z) = zn and the flow it corresponds to given by equation (Bgeb3) we note
that this is physically the flow in a wedge-shaped region of included angle π/n as shown in Figure 1. Thus
n = 2 correspond to the flow in 45o wedge region, n = 3 for a 30o wedge region, etc. To verify this note
that the velocity in the θ direction, uθ, is

uθ =
1

r

∂φ

∂r
= −nrn−1 sinnθ (Bgeb6)

which means that uθ = 0 on the radial lines, θ = 0 and θ = π/n. These are therefore streamlines which
can, in potential flow, be replaced by walls to yield the flow in the wedge between them (and, of course in



Figure 1: Planar potential flow in wedge-shaped region.

other wedges, with repeated flows at larger angles). Note that the velocities trend to zero in the apex of
the wedge at r → 0 (provided n > 1).

In contrast the case of f(z) = z−n (and the flow it corresponds to given by equation (Bgeb4)) is physically
the potential flow around a wedge that projects into the fluid as sketched in Figure 2. To verify this note
that

uθ =
1

r

∂φ

∂r
= −nr−(n+1) sin nθ (Bgeb7)

and therefore uθ = 0 on the radial lines, θ = 0 and θ = π/n. In this case the potential flow is outside the
wedge formed by these radial lines (provided n > 0). Note that the velocities trend to infinity at the apex
of the wedge at r → 0 (provided n > 0).

Figure 2: Planar potential flow around a wedge.

Among the potential flows of the type described by equation (Bgeb4) is that due to the function f(z) = C/z
where C is a constant which, for present purposes, we choose to be real. This yields

φ =
C cos θ

r
, ψ = −C sin θ

r
, u = −C cos 2θ

r2
, v = −C sin 2θ

r2
(Bgeb8)

and can be recognized as that due to a doublet oriented in the x direction. Combining that with a uniform
stream of velocity, U , and setting the constant C equal to UR2 yields the flow of a uniform stream past a
cylinder of radius, R. Thus the complex variable form of the solution for potential flow past a cylinder is

f(z) = U

{
z +

R2

z

}
(Bgeb9)



The simplicity of this expression is an indication of how powerful the method of complex variables can
be for planar potential flows. Furthermore we can add some circulation to the flow around a cylinder by
adding a free vortex with f(z) = −i(Γ/2π) ln z.

As a last example and for future purposes, we note that the flow generated at the position z by a series of
vortex sheet elements of strength, γj (j = 1 to J), length sj and location zj can now be written compactly
as

f(z) =
J∑

j=1

− iγj sj

2π
ln (z − zj) (Bgeb10)

so that the velocities can be written as

df

dz
= u− iv =

J∑
j=1

− iγj sj

2π(z − zj)
(Bgeb11)

Before proceeding to any more complicated examples, we need to introduce another major tool in creating
planar potential flow solutions, namely the procedure of conformal mapping.


