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Gravity Wave Boundary Conditions

Since the form of the solution to Laplace’s equation obtained by separation of variables in Cartesian
coordinates, namely
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is oscillatory in the x direction and contains the arbitrary functions of time C1, C2, C3 and C4 it seems
natural to use it to find solutions for the potential flow associated with gravity waves on an otherwise
horizontal liquid surface. We will use the notation indicated in Figure 1. As usual the y coordinate is

Figure 1: Notation used for gravity waves on an otherwise horizontal liquid surface.

vertically upward opposite to the direction of gravity, g. The mean position of the liquid surface is chosen
to be y = 0 and the height of the waves is denoted by h(x, t) where the maximum height is hM . The
wavelength of the waves is λ. Usually we will confine our analyses to small amplitude waves for which
hM � λ.

There are, of course, a number of different types of waves that one might encounter. Standing waves do
not propagate in any direction, have fixed nodal locations on the x axis spaced a distance λ apart where
the surface elevation, h, is always zero and other locations halfway between the nodes at which the surface
elevation has its maximum amplitude, hM . Consequently standing waves have a surface elevation given by

h(x, t) = hM sinωt sin kx (Bgcb4)

where ω is the frequency of the waves (we also define a wave period equal to 2π/ω) and clearly the
wavenumber, k = 2π/λ. Note that we could equally well have used cos ωt rather than sinωt and cos kx
instead of sin kx. However, we are free to choose the origin of both t and x and therefore the form of the
relation (Bgcb4) is sufficiently general for present purposes.

Traveling waves on the other hand maintain a constant amplitude and shape but propagate in either
the positive or negative x direction. Consequently traveling waves propagating in the positive x direction
would have a surface elevation given by

h(x, t) = hM sin (kx − ωt) (Bgcb5)

and waves propagating in the negative x direction would have a surface elevation given by

h(x, t) = hM sin (kx + ωt) (Bgcb6)



Note that if we superimpose waves travelling in the positive x direction on waves of the same amplitude
travelling in the negative x direction by adding together the expressions (Bgcb5) and (Bgcb6), the result
is standing waves of amplitude 2hM .

Examining the forms of the waves given by the relations (Bgcb4), (Bgcb5) or (Bgcb6) and comparing these
with the form of the solution, (Bgcb1), (Bgcb2) and (Bgcb3) it is clear that we could choose the functions
of time C1(t) and C2(t) to simulate any of the three wave types and we will do this in the examples which
follow.

First, however, we need to establish the form of the boundary conditions that should be applied at the
liquid surface. Recall that, for potential flow, only one boundary condition is needed at a solid boundary,
namely the condition of zero velocity normal to the boundary. However, the location of that solid boundary
is normally known and given. In contrast the location of a ”free” liquid surface usually has to be found
as a part of the solution of the flow. That requires and additional boundary condition. Consequently, two
boundary conditions are needed at a free liquid surface to solve for the associated potential flow. [Note
that the situation is different for the Navier-Stokes equations where three additional boundary conditions
are needed.] The two boundary conditions needed at a free surface of a potential flow are known as the
kinematic and dynamic boundary conditions. The kinematic condition is associated with the kinematic
relation between the liquid velocities and the rate of change of position of the free surface. On the other
hand the dynamic condition is derived from the relation between the pressure in the overlying gas and
that in the liquid at the surface.

In general, the kinematic boundary condition at a liquid free surface states that the liquid velocity normal
to the surface at the surface must be equal to the rate of change of position of the surface in the normal
direction (if there is evaporation or condensation this needs to be modified but we neglect this complication
for present purposes). In the case of the small amplitude waves shown in Figure 1, the application of this
condition to first order leads to the relation

∂h

∂t
= (v)y=h (Bgcb7)

where, to first order, it is sufficient to evaluate v at y = 0 rather than at y = h; indeed, it can be shown
that provided hM � λ then the second order corrections to (Bgcb4) are small. The present treatment will
assume small amplitudes so that the kinematic boundary condition becomes

∂h

∂t
= (v)y=0 (Bgcb8)

The general form of the dynamic condition at a liquid free surface states that the normal and shear stresses
in the gas (or other immiscible liquid) above the liquid surface must be equal to those in the liquid below
the free surface (except, perhaps, for differences due to surface tension or surface rheology effects). In the
present treatment we will assume for simplicity that the stress stae in the gas is simple, namely a constant
or atmospheric pressure that we will denoted by pa. In most cases we will also neglect any surface tension
effects though a specific later example will examine those effects. Consequently our simplified dynamic
boundary condition will be that the pressure in the liquid at the free surface be constant and equal to pa.
Since we are assuming potential flow and since Bernoulli’s equation therefore applies it follows that the
dynamic condition is that {
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Since the liquid is assume incompressible the ρ can be absorbed in the constant. Moreover, it can be
shown that, in the examples delineated in this section, the |u|2 is a second order term so that the dynamic



condition becomes {
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+ gh = constant (Bgcb10)

and, finally, that the error in evaluating the first term at y = 0 rather than y = h is also second order so
the final form of the dynamic condition is{
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}
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+ gh = constant (Bgcb11)

In studying gravity waves in the sections which follow the forms of the kinematic and dynamic boundary
conditions used will be equations (Bgcb8) and (Bgcb11) unless otherwise noted.


