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Gravity Waves at Vertical Boundaries

In this section we consider the interaction between gravity waves and a solid object that intersects the
liquid surface. For the sake of simplicity, we will focus on a simple vertical wall as depicted in Figure 1.
The boundary condition at this wall will therefore be that the horizontal velocity, u, must be zero at all

Figure 1: Gravity waves at a solid, vertical wall.

times. But this is not a possibility within the traveling wave solutions. It is however possible to locate a
vertical wall at one of the x locations in the standing wave solutions of equations (Bgce5) to (Bgce7) or
(Bgce8) to (Bgce10) at which u is zero at all times, namely at kx = π/2, 3π/2, etc. or kx = −π/2, −3π/2,
etc. This allows the construction of a series of solutions of waves interacting with vertical walls or waves
sloshing back and forth in a box. A few examples will illustrate the possibilities.

The first and simplest example involves a single vertical wall as shown in Figure 1. If we set out to seek
the solution for a train of travelling waves (propagating in the positive x direction) we would not be able
to find a solution which satified the condition of u = 0 at the solid wall. We would need to add a set of
waves of equal amplitude traveling in the negative x direction and thus transforming the surface to a set
of standing waves as illustrated in Figure 2. One could imagine that this additional set of waves represents
the reflection of the initial set of waves from the solid wall. Note that the amplitude of the standing waves
is twice the amplitude of the component traveling wave trains. This is analgous to the observation of
sea waves impacting a harbor wall and the way the waves climb the wall to almost twice their incoming
amplitude.

Another example is waves sloshing back and forth between two vertical walls as depicted in Figure 3. If
the liquid between is infinitely deep then the solution is simply given by equations (Bgce5) to (Bgce7) and
the first mode of sloshing (Figure 3, left) is then given by placing the vertical walls one wavelength apart
while the second mode is produced by placing the vertical walls two wavelengths apart (Figure 3, right)
and so on to as many wavelengths as desired. It follows that if the distance between the vertical walls is
L then the various modal wavelengths, λn where n = 1, 2, 3, ... are given by λn = L/n and, from equation
(Bgce10), the frequencies, ωn, of each of these modes are given by

ωn = (2πgn/L)
1
2 (Bgcf1)

Note that the lowest mode, n = 1, has the lowest frequency, ω1 = (2πg/L)
1
2 and that the frequencies



Figure 2: The standing waves next to a solid vertical boundary.

Figure 3: Waves sloshing between two vertical walls: first mode (left) and second mode (right).

of higher modes increase with the square root of the number of wavelengths manifest. Note also that the
frequencies decrease with the width, L.

We can, of course, examine the modes of sloshing in a rectangular box (Figure 4) in a similar way by
inserting vertical walls into the standing wave solution for waves on a liquid of finite depth, equations
(Bgce8) to (Bgce10). As in the case of infinite depth we denote the distance between the vertical walls by
L and the various modal wavelengths, by λn where n = 1, 2, 3, ... and λn = L/n. Then, using equation

Figure 4: Waves sloshing in a rectangular box: first mode (left) and second mode (right).



(Bgcf1) for the modal frequencies, ωn, we find
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Note that the frequencies decrease as the aspect ratio of the box, H/L, decreases. Sloshing can be a major
problem in large liquid tanks subjected to imposed motion, particularly if the frequencies of the imposed
motion correspond to these natural frequencies of sloshing. For example, this can be a serious issue for
swimming pools, fuel tanks and water tanks in earthquake country. It can also be a serious issue in ships
with tanks designed to transport liquids.


