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Potential Flow around a Cylinder

Superimposing a uniform stream of velocity, U, on the potential flow due a doublet oriented in the x
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Figure 1: Streamlines in the potential flow of a doublet in a uniform stream.

direction produces the flow and streamlines shown in Figure 1 which has the velocity potential,
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and the radial velocity
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where the polar Coordlnates rand 0, are x = r cos § and y = rsin # as before. It follows that at the specific
radius, r = R = (Qa/mwU ) the radial velocity is zero for all §. Therefore the radius, » = R, is a streamline

and could, 1f so desired, be replaced by a cylinder of that radius in order to generate the potential flow
around a cylinder (shown by the red circle in Figure 1). It follows that the potential flow around a cylinder
of radius R is characterized by the velocity potential, velocity components and stream function given by
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It will be useful for future purposes to investigate some of the properties of this flow. First note that the
tangential velocity on the surface of the cylinder is given by

(ug)r—p = —2Usinf (Bgdh?7)

As expected the velocity on the surface increases from zero at the front stagnation point (f = 7) to a
maximum of 2U at the "equator” (f = m/2) and then decreases again to zero at the rear stagnation point
(0 = 0). By Bernoulli’s theorem it follows that, neglecting gravity, the pressure, p, on the surface of the
cylinder is given by
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where p. is the pressure far upstream. It is conventional to define a non-dimensional coefficient of
pressure denoted by C, as

P — P
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and it follows from equation (Bgdh8) that the coefficient of pressure on the surface of the cylinder is given
by

(Cp)r=r = 1—4sin®0 (Bgdh10)

Since the pressure on the surface of the cylinder, (p),—g, is symmetric fore and aft it must follow that
the drag on the cylinder in potential flow is identically zero. This is, again, an example of D’Alembert’s
Paradox which states that the drag on any finite body due to potential flow must be zero. We shall revisit
this issue in future pages and resolve the apparent conflict with our practical experience. For the present
we take note of the sinusoidal pressure distribution on the surface cylinder depicted in Figure 2. Note

Cp‘“' '
1
o<
-3
6=x
Front Stagnation Rear Stagnation
Point Point

Figure 2: Pressure distribution on the surface of a cylinder in the potential flow.

that C), at the front and rear stagnation points is unity as it always is where the velocity is zero. Note
the minimum pressure coefficient of —3 at the equator, § = 7/2 and the symmetry of the potential flow
pressure distribution that leads to zero drag. Though we jump ahead, we should mention that in the actual
flow around a cylinder the pressure over the front between §# = 0 and 6 = 7/2 is quite close to that of



the potential flow. However, the pressure over the rear departs substantially from the potential flow. In
practice the main flow leaves the surface at points like S, or Sr and, from that point on, the pressure is
much lower than the potential flow pressure. This means that the actual drag is far from zero. We will
describe and explain these features in more detail on later pages.



